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Abstract

Purpose — This study aims to propose the Shapley value that originates from the game theory to quantify
the relative risk of a security in an optimal portfolio.

Design/methodology/approach — Systematic risk as expressed by the relative covariance of stock
returns to market returns is an essential measure in pricing risky securities. Although very much in use, the
concept has become marginalized in recent years because of the difficulties that arise estimating beta. The
idea is that portfolios can be viewed as cooperative games played by assets aiming at minimizing risk. With
the Shapley value, investors can calculate the exact contribution of each risky asset to the joint payoff. For a
portfolio of three stocks, this study exemplifies the Shapley value when risk is minimized regardless of
portfolio return.

Findings — This study computes the Shapley value of stocks and indices for optimal mean-variance
portfolios by using daily returns for the years 2016-2019. This results in the risk attributes allocated to
securities in optimal portfolios. The Shapley values are analyzed and compared to the standard beta estimates
to determine the ranking of assets with respect to pertinent risk and return.

Research limitations/implications — An alternative approach to value risk and return in optimal
portfolios is presented in this study. The logic and the mechanics of Shapley value theory in portfolio analysis
have been explained, and its advantages relative to standard beta analysis are presented. Hence, financial
analysts when adding or removing specific assets from present positions will have the true and exact impact
of their actions by using the Shapley value instead of the beta.

Practical implications — When computing the Shapley value, portfolio risk is decomposed exactly
among its assets because it considers all possible coalitions of portfolios. In that sense, financial analysts
when adding or removing specific securities from present holdings will be able to predict the true and exact
impact of their transactions by using the Shapley value instead of the beta. The main implication for investors
is that risk is ultimately priced relative to their holdings. This prevents the subjective mispricing of securities,
as standard beta is not used and might allow investors to gain from arbitrage conditions.

Originality/value — The logic and the methodology of Shapley value theory in portfolio analysis have
been explained as an alternative to value risk and return in optimal portfolios by presenting its advantages
relative to standard beta analysis. The conclusion is that the Shapley value theory contributes much more
financial optimization than to standard systematic risk analysis because it enables looking at the contribution
of each security to all possible coalitions of portfolios.
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1. Introduction

The purpose of this paper is to calculate the Shapley value (Shapley, 1953) of securities in
optimal portfolios to estimate the systematic risk of individual stocks. The Shapley value
emerges from cooperative game theory where it is used to measure the contribution of each
player to the common goal of a game. Lloyd Shapley received the Nobel Prize in Economics
for this result, and since then, the concept has been a standard theoretical and practical
measure in economics, politics and sports as reviewed by Alvin Roth (1988). In finance, the
Shapley value has been shown to be highly adequate for allocating costs of insurance

of stocks

Received 14 August 2019
Revised 13 March 2020

8 June 2020

Accepted 9 August 2020

The Journal of Risk Finance
© Emerald Publishing Limited
1526-5943

DOI 10.1108/JRF-08-2019-0149



JRF

companies (Lemaire, 1984), valuing corporate voting rights (Zingales, 1995; Nenova, 2003)
and measuring the attribution of risk in banking systems (Tarashev et al,, 2015), to cite a
few. However, applying the Shapley value in investments and portfolio theory has been
quite limited. Only recently, Ortmann (2016) and Colini-Baleschi et al. (2018) used the
Shapley theory to price the market risk of individual assets, and Shalit (2017) established the
theoretical foundations for the Shapley value to decompose the risk of efficient portfolios.
Shapley value does not change the way portfolios are optimized but rather computes the
exact and true price to be attributed to individual assets. In this sense, the approach can
be validated for use in classical mean-variance (MV) portfolios as presented here and can be
used for any other investment model in the future.

My claim is that conventional betas measuring the sensitivity of stocks returns with
respect to market returns are not sufficient to evaluate the pertinent risk of an asset in a well-
diversified portfolio. Therefore, the subjective valuations that investors use to acquire these
securities can be biased and lead to erroneous decisions. It is my contention that financial
analysts would benefit a great deal by using Shapley values, as they could profit from the
arbitrage conditions caused by price imbalances. Contrarily to standard beta analysis that
considers the complete stock market, Shapley value imputes the contribution of each risky
asset by looking for a given set of securities at all possible portfolios the security might
participate in.

Indeed, by looking at portfolio selection as a cooperative game played by the
securities for minimizing risk for a given return, one can compute the true and exact
imputation of assets to the optimal portfolio. As risk reduction and return increase
depend on the order stocks that are added to the portfolio, the Shapley value is
calculated by averaging the marginal contributions from the arrival of stocks to the
specific portfolios.

In the present paper, I construct efficient portfolios and extract the Shapley value of
stocks in these optimal portfolios. The Shapley values are then compared to standard beta
measures. I begin by presenting the mechanics of computing the Shapley value of risky
assets, using a simple theoretical example first for minimum variance portfolios (MVPs),
then for MV efficient portfolios. Indeed, before using the Shapley value in diversified
investments, practitioners and financial analysts would benefit by understanding the
working intricacies of the approach in risk reduction. Then, using daily returns of US stocks
and financial indices for the years 2016-19, I construct optimal portfolios, estimate beta
systematic risks and compare these figures to their Shapley values to evaluate their
usefulness.

2. Shapley value in optimal portfolios

In this section, I present the methodology for evaluating the Shapley value of securities in a
portfolio. Our investment model views portfolio selection as a cooperative game played by
the securities to reach the common goal of minimizing portfolio risk for a given expected
return or, alternatively, maximizing the portfolio’s expected return for a specific risk. This is
commonly known to be the standard MV portfolio optimization. What is less common is to
consider portfolio selection as a cooperative game and then to use the Shapley value
procedure to impute the value that each stock contributes to reduce portfolio risk. Shapley
value considers all the portfolios a security can participate from itself alone to the total
number of available stocks. We then calculate the stock’s marginal contribution to risk
reduction when it is added to a portfolio and, last, we average these contributions. The sum
of these averages is the Shapley value for a given stock which is formulated below.



Let N'be the total number of available stocks, s the number of stocks in a portfolio for
s =1, ... N, and v(s) the risk associated with the optimal portfolio of s stocks. As
securities are added to the portfolio, total risk decreases (at least not increases) as the
result of diversification. For each stock, marginal risk differences are tabulated and,
then, averaged using combinatorial probabilities since stocks can participate in
portfolios in multiple ways. The averages are totaled to produce the Shapley value (SV)
as follows for stock %:

N-1
SV(N,0) =" Zw [v(S+ k) —v(9)]) @
s=1 S ’

Naturally, the sum of all the Shapley values of the assets equals the total risk of the portfolio
built with these securities, which follows:

o(S) = 37 SVN,0). @
k=0

In the next example, I address several concerns a reader might be perplexed regarding the
Shapley value formulation.

2.1 Shapley value in three stocks portfolio example
To understand the logic behind the Shapley value in investment analysis, we construct a
portfolio of three hypothetical stocks A, B, C whose statistics are reported in Table 1. I will
now demonstrate how the sum of incremental risks generated by a stock when added to the
portfolio produces the Shapley value for that stock. For ease of presentation, consider as an
investment objective the minimization of portfolio risk regardless of its mean return. This
allocation results in the MVP that is derived in the following.

Regardless of portfolio mean returns w,, the objective is to choose the weights w; to
minimize the portfolio variance o:
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. . . . N .
subject to the constraint that all the wealth is used up, i.e. Zi: Lwi=1 allowing for short

sales, w § 0, where w; is the weight of stock 7, o; its standard deviation and p;; is the

coefficient of correlation between stock 7 and stock 7. Using the matrix notation allows us to
simplify the exposition (Fabozzi et al, 2011). Then, the problem is stated as: minimize

Stocks A B C
Correlation A 1 0 -0.3
Correlation B 0 1 0.4
Correlation C -0.3 0.4 1
Mean (%) 10 5 20

Std Deviation (%) 30 10 20

Shapley value
of stocks

Table 1.
Example with three
stocks
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Table 2.

MVP and Shapley
values quoted in
standard deviation

a-f] = w Xw subject to w' I =1regardless of the portfolio mean return u, = w' u, where w
is the array of portfolio weights, X the variance-covariance matrix, / an array of ones and p
the array of mean returns.

Using matrix notation, the optimal solution for MVP is explicitly determined in portfolio
theory and practice (Huang and Litzenberger, 1988). With the quadratic formsa = 7 X~ 'n
and ¢ = I’ 21 the MVP solution yields the variance o(MVP) = 1/c and the mean
w(MVP) = a/c. The MVP solution produces the portfolio weights 11.83% for Stock A,
76.72% for Stock B and 11.45% for Stock C. The standard deviation at MVP is given as
9.27% and its mean return 7.31%. To calculate the Shapley value of a stock at MVP, one
needs to look at all the possible portfolios which contain the stock. We can see that for a set
of three stocks, there are eight possible portfolios including the empty one.

We begin with the Shapley value of Stock A that is calculated by averaging the risks
Stock A accrues in portfolios A, AB, AC and ABC. First, we add Stock A to an empty
portfolio. The incremental risk is only its standard deviation o4, ie., 30%. Then, we
calculate the risk of portfolio AB at its MVP. The incremental risk of Stock A is calculated
by adding A to B to form portfolio AB; that is, }l¥¥ — o5 = 9.49% — 10% = —0.51%.
We repeat this procedure when A is added to C to form portfolio AC. Finally, we calculate
the incremental risk of Stock A being added to portfolio BC to form ABC that is,
Thpe — g = 9.27% —9.94% = —0.67%. The increments are averaged by taking into
account the permutation probabilities. Hence, for Stock A, we obtain (1/3) 30% — (1/6)
0.51% — (1/6) 5.95% —(1/3) 0.67% = 8.69% The incremental risks and Shapley values for
the three stocks in a minimum variance portfolio are then calculated and presented in Table 2.

As seen in Table 2, the sum of the Shapley values for the three stocks equals the standard
deviation at MVP. We now compute the Shapley value for optimal MV portfolios. For that
purpose, we need to calculate the efficient frontier, as done in the following.

2.2 Mean-variance optimal portfolios

Instead of minimizing the portfolio variance by itself, we construct optimal portfolios for
specific mean returns. For simplicity of exposition, the optimization problem is expressed in
matrix notation. The objective is to find the weights w that minimize half the portfolio

variance } o = 1 w/Zw, subject to its mean return constraint u, = w' p and the portfolio

constraint w’ I= 1, allowing for short sales w § 0.
As shown by Pachamanova and Fabozzi (2016) to cite a recent reference, the optimization
solution is a set of portfolio weights that depend on the required mean return ., as follows:

1

Ed — — — —
wp:a[b.zll—a-zlp]ﬂcz —a 2y, )
Portfolio Probability MVP (%) Incremental A (%)  Incremental B (%)  Incremental C (%)
A 1/3 30 +30

B 1/3 10 +10

C 1/3 20 +20

AB 1/6 9.49 —0.51 —20.51

AC 1/6 14.05 -5.95 -15.95

BC 1/6 9.94 -10.06 —0.06
ABC 1/3 9.27 —0.67 —4.78 —0.22

Shapley value 9.27 8.69 —336 392




where the quadratic forms ¢ and ¢ are as shown above, b = u’ £ *pand d = bc — >
Based on the above, one can delineate the MV efficient frontier by expressing portfolio
risk o, for a given return ., as:

2
1
o) = \/g <p,p - g) = 6

Using the data in Table 2, the frontier of MV optimal portfolios is calculated and is reported
for a select number of required returns on Table 3. As one moves along the frontier from a
relatively safe portfolio such as Portfolio II to a riskier one with higher mean return and
higher variance such as Portfolio VI, the weight of Stock A somewhat increases, the weight
of Stock C increases more and the holdings of Stock B are reduced and even shorted. This is
because of the fact that Stock B is considered the safest asset and C the riskiest one. The
frontier is depicted in Figure 1.

Now, one can decompose the risk of frontier portfolios by attributing the Shapley value
for each of the three stocks to the standard deviation of the optimal portfolios. This is done
by using equation (1). The results are shown in Table 4 for the selected optimal portfolios
along the frontier.

According to the results of Table 4, we can see that, as expected from MV portfolio
theory, the higher the required expected return is the higher is the risk exhibited by optimal
portfolios. What is less obvious is the relative contribution of the various stocks to portfolio
risk. Some Shapley values are negative meaning that some stocks reduce portfolio risk as
mean return increases, while other values are positive as their stocks contribute to
increasing risk. What is remarkable is that the Shapley value reveals that the asset’s relative
contribution to portfolio risk evolves along the optimal frontier. Table 5 exhibits the Shapley

Portfolio Mean (%) SD (%) Stock A (%) Stock B (%) Stock C (%)

I 731 9.27 11.83 76.72 1145
I 10.31 9.84 16.61 53.53 29.86
11 13.31 11.39 21.39 30.35 4827
v 16.31 13.59 26.16 7.16 66.67
\ 19.31 16.18 30.94 —-16.02 85.08
VI 22.31 18.99 35.72 —-39.20 103.49

Shapley value
of stocks

Table 3.
Weights of Selected
Frontier Portfolios

3 Stocks Efficient Frontier Portfolios
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values relative to the portfolio standard deviation. For Stock A, the relative contribution
stays somehow constant whereas the relative contribution of Stock B increases along the
frontier while the relative contribution of Stock C decreases.

3. Systematic risk in actual portfolios

Before calculating the Shapley value for stocks in actual portfolios, I recapitulate the essence
of systematic risk in investments. In portfolio theory, the concept used for systematic risk is
a measure of asset riskiness relative to market performance since securities are held in
portfolios. This is the risk most relevant for evaluating and pricing risky assets. The typical
measure is the beta risk obtained by the relative covariation of asset returns and market
portfolio returns, namely, B; = cov(7;,7,)/ a2, where #; are the stock returns, 7,, the
market returns and o2, the variance of market returns. The underlying assumption is that
the entire stock market is used as the investor’s portfolio of assets. The alternative approach
I propose here would be to express systematic risk as the relative risk a security contributes
to a specific portfolio for a given number of assets as expressed by the Shapley value.

The analysis is conducted on a portfolio of 13 stocks and industry indices such as
exchange traded funds (ETFs) that encompass most of the US stock market. The collected
data consist of daily adjusted returns (accounting for dividends and other distributions) for
the years 2016, 2017, 2018 and 2019 whose statistics are shown on Table 6. I calculate the
securities’ systematic risk using two approaches. The first is the standard method where
market returns are proxied by the returns on a market index such as the S&P500. For that
purpose, I use the returns on the S&P500 ETF whose symbol is SPY. The results are
compiled in Table 6.

Instead of market returns, the second approach is to use the returns on the optimal MV
portfolio for a given mean. To do so, one optimizes the portfolio for a given mean return. The
portfolio returns are computed using the optimal portfolio weights from equation (4) as
computed in Table 7 for six arbitrary means. Once the returns are obtained they are used to
calculate the relative covariation of the stock with respect to the optimal portfolio to obtain
the betas for the individual stocks. The results are presented in Table 6 for the portfolio P*
whose mean return is 0.052% [1].

Portfolio Mean (%) SD (%) Shapley A (%) Shapley B (%) Shapley C (%)

I 731 9.27 1387 ~11.09 6.49

I 10.31 9.84 14.63 —415 —0.64
Table 4. i 1331 11.39 15.87 3.04 752
Shapley Valuesof v 1631 1359 1797 9.05 ~1343
stocks on the frontier v 19.31 16.18 21.63 12.21 —17.66
portfolios VI 2231 1899 26.20 13.70 2091

Portfolio Mean (%) SD (%) % Shapley A % Shapley B % Shapley C

I 731 9.27 149.62 ~119.63 70.01

I 10.31 9.84 14868 —4217 —6.50

11 1331 11.39 139.33 26.69 —66.02
Table 5. v 16.31 1359 132.23 66.59 —98.82
Relative Shapley % 19.31 16.18 133.68 75.46 —-109.15
values VI 22.31 1899 137.97 7214 ~110.11




Shapley value

Ou 00 TG v.I.T. *
Symbol Name Mean (%) SD (%) B w.rt. SPY B w.rt. port II o { S tOCkS
AAPL Apple Inc 0.12 1.53 127 202
BAC Barnk of America 0.09 162 1.36 163
EEM Emerging Market ETF 0.05 1.14 1.06 0.94
FB Facebook Inc 0.08 1.82 1.22 147
IWM Russell 2000 ETF 0.05 1.02 1.09 0.95
JNK Hi Yield Bond ETF 0.03 0.36 0.32 0.68
QQQ NASDAQ-100 ETF 0.07 107 1.22 1.32
XLE Energy ETF 0.02 1.28 1.08 0.55
XLF Financial ETF 0.09 144 1.09 1.56
XLK Technology ETF 0.09 110 124 154 Table 6.
XLU Utilities ETF 0.06 0.83 0.26 1.06 Systematic risks of
XLV Health Care ETF 0.05 0.89 0.90 0.90 selected assets
XOP Exploration Oil ETF 0.00 2.14 1.52 0.23 2016-2019
Portfolios 1(%) 10 (%) I (%) IV (%) V (%) VI (%)
Mean return 0.0282 0.0520 0.0757 0.0995 0.1233 0.1471
SD 0.2996 0.3740 05387 0.7354 0.9442 1.1586
AAPL 140 848 1556 22.63 29.71 36.79
BAC 221 6.35 14.90 2345 32.00 4055
EEM -955 1194 1434 ~16.73 -19.13 —2152
FB 0.78 296 5.15 7.34 952 11.71
IWM ~113 —7.72 14.30 —20.88 2747 —34.05
JNK 114949 563 76.33 57.03 37.73 1842
QQQ —~11.05 — 42.03 —73.02 —~104.01 —135.00 ~165.98
XLE 148 -335 -818 ~1301 —17.84 —22.67
XLF 138 491 843 11.96 15.49 19.01
XLK 0.07 36.06 72.05 108.04 144.03 180.02
XLU 3.16 1519 27.22 39.25 51.29 63.32 Table 7.
XLV 5.80 1.62 256 —6.74 ~10.91 ~15.09 Assets holdings of
XOP —5.08 —6.16 —7.25 —8.34 —9.43 —1052  six frontier portfolios

Because systematic risk is the value investors prefer to use when managing the riskiness of
assets in portfolios, it is important it reflects its original intention. My contention is that beta
as systematic risk might fail when ranking the relative riskiness of assets because it
considers only the risk imputation in the final portfolio and not all possible portfolios the
stock might be included in. Using the Shapley value to decompose portfolio risk into specific
components should remedy these lacunae.

4. Shapley value in actual portfolios

The basic idea behind the Shapley value in portfolio analysis is to decompose the risk of
optimal portfolios such that they are aptly attributed to individual stocks. The outcome of
this decomposition reveals the relevant risk investors should use when managing portfolios.
The conception that only risk matters regardless of mean return is not pertinent here
because one analyzes MV efficient portfolios, i.e. they are portfolios that minimize the
variance for given mean return. Using a data set of 13 selected stocks and ETFs, we
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Table 8.
Shapley values of
frontier portfolios
assets

calculate the MV portfolio frontier using the procedure outlined in Section 2.2. The assets
weights for six data points on the efficient frontier are presented in Table 7.

To calculate the Shapley value of assets on the efficient frontier, we follow the
optimization procedure outlined in Section 2.2 for all the subsets of the assets in the portfolio.
Specifically, we first establish all the 2" subsets of the securities in set . Then, we com;))ute
the variance-covariance matrix X,a = I' 2 ' u b=y’ 2 ' pc =1 27  land d = be — a° for
all the subsets. For some arbitrary required mean return ., like the ones shown on the first
row of Table 7 we calculate for all the subsets the optimal standard deviation expressed by

equation (), ie, op = /(1) — f—f)z + 1 This is the risk that is used to compute the
Shapley values of equation (1).

The results for the 13 selected stocks and ETFs are shown on Table 8 for four frontier
portfolios. We can see that some Shapley values are negative implying that those assets
reduce their risk contribution to the portfolio. This is mostly the case for ETFs. Positive
Shapley values imply that these assets increase risk along the optimal frontier and,
therefore, increase mean return. To assess the usefulness of Shapley values in optimal
portfolios we need to look at the assets contribution relative to portfolio risk. This feature is
shown in Table 9 for four optimal portfolios on the efficient frontier. For our Portfolio IT on
the frontier, we can see that the assets contributing the most to risk and return during the
2016-2019 sample span were Facebook Inc, the Financial ETF and the Technology ETF. We
then compare the results of the Shapley value approach with conventional systematic risk
by ranking the assets with respect to beta and the Shapley value as exhibited in Table 10.
For the 2016-2019 years, ranking the 13 assets differ somewhat since conventional beta
relates to the risk and return of the entire market proxied by the SPY ETF whereas the
relative Shapley value ranking is specific to the optimal portfolio constructed with the 13
assets, as it imputes relative risk and return between the others assets in the portfolio.

In portfolio theory, ranking according to beta explains how a specific asset reacts with
respect to the entire stock market’s movement. In contrast, pricing securities according to
Shapley value theory reflects the optimal decomposition of portfolio risk. Within our data,
ranking according to relative Shapley values show that the Financial ETF XLF, the
Technology ETF XLK and Facebook Inc were the most valuable assets in increasing risk
and return for that small efficient portfolio during the 2016-2019 period.

Portfolios 1(%) 11 (%) 10T (%) IV (%)

Mean return 0.0282 0.0520 0.0757 0.0995
SD 0.2996 0.3740 0.5387 0.7354
AAPL —0.0654 0.0206 —0.0523 —0.2072
BAC 0.2817 0.2204 0.0305 —0.0876
EEM 0.0866 —0.0298 0.3461 0.6599
FB 0.4024 0.2880 0.1030 0.0758
WM 0.0381 —0.0606 0.2976 0.5845
JNK —0.7842 —0.3935 —0.1455 —0.0668
QQQ —0.1026 —0.0509 —0.1007 —0.1479
XLE —0.2170 —0.0565 0.0147 —0.0023
XLF 0.6310 0.4120 0.0771 —0.0202
XLK 0.4925 0.3214 —0.0113 —0.1562
XLU —0.1661 —0.2062 —0.1327 —0.0552
XLV —0.2049 —0.1137 0.0645 0.1600

XOP —0.0925 0.0229 0.0478 —0.0015




Portfolios 1(%) (%) III (%) IV (%)

Shapley value

of stocks
Mean return 0.0282 0.0520 0.0757 0.0995
SD 0.2996 0.3740 0.5387 0.7354
AAPL —0.2182 0.0551 —0.0972 —0.2818
BAC 0.9402 0.5893 0.0566 —0.1191
EEM 0.2892 —0.0798 0.6424 0.8974
FB 1.3428 0.7700 0.1912 0.1031
IWM 0.1271 —0.1620 0.5524 0.7949
JNK —2.6170 —1.0520 —0.2700 —0.0909
QQQ —0.3425 —0.1362 —0.1869 —0.2011
XLE —0.7242 —0.1511 0.0272 —0.0031
XLF 21057 1.1015 0.1431 —0.0274
XLK 1.6437 0.8593 ~0.0210 —0.2124 _ Table 9.
XLU —05543 —05513 —0.2463 —0.0751 Relative shapley
XLV —0.6839 —0.3039 0.1198 02176  value (SV) of frontier
XOP —0.3087 0.0612 0.0886 —0.0021 portfolio assets
Assets ranked wrt to Shapley Assets ranked wrt to Beta
Symbol Relative SV Symbol B(SPY)
JNK —1.0520 XLU 0.26
XLU —0.5513 JNK 0.32
XLV —0.3039 XLV 0.90
WM —0.1620 EEM 1.06
XLE —-0.1511 XLE 1.08
QQQ —-0.1362 XLF 1.09
EEM —0.0798 IWM 1.09
AAPL 0.0551 QQQ 1.22
XOP 0.0612 FB 1.22
BAC 0.5893 XLK 124 Table 10.
FB 0.7700 AAPL 127 Relative Shapley
XLK 0.8593 BAC 1.36  values vs systematic
XLF 1.1015 XOP 1.52 risk

5. Some concluding remarks
I have explained the logic and the methodology of Shapley value theory in portfolio analysis
as an alternative to value risk and return in optimal portfolios by presenting its advantages
relative to standard beta analysis. My conclusion is that the Shapley value theory
contributes more to financial optimization than to standard systematic risk analysis because
it enables looking at the contribution of each security to all possible coalitions of portfolios.
Shapley value in investments stands at the culmination of an evolution that links asset
returns to pertinent risk. Initially, investors first looked at the security own risk and
variance to price expected return. Then, with Markowitz (1952) theory, portfolios began to
be constructed using correlations and covariances. With the advent of capital asset pricing
model, investors priced assets by comparing them to the entire stock market and computing
systematic risk. When computing the Shapley value, portfolio risk is decomposed exactly
among its assets because it considers all possible coalitions of portfolios. In that sense,
financial analysts when adding or removing specific securities from present holdings will be
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able to predict the true and exact impact of their transactions by using the Shapley value
instead of the beta. The main implication for investors is that risk is ultimately priced
relative to their holdings. This prevents the subjective mispricing of securities, as standard
beta is not used and might allow investors to gain from arbitrage conditions.

Note
1. As a reference, the mean return on the SPY index for the 2016-2019 years was 0.056%.
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